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Abstract. The 6- j  symbols of a group are independent of the subgroup chain chosen to 
define the basis states. We present an improved algorithm for calculating the primitive 6- j  
symbols for a compact group with a faithful irrep by recursive building up using only the 
Kronecker product rules and the general properties of 6-j. Previously one has sometimes 
needed to search for the useful equations by systematically trying all equations which 
involve unknown 6-j. We show that the primitive 6- j  may all be easily solved in terms of 
a subclass, the ccre 6-j. We discuss how the core 6- j  can usually be solved, proving that 
the method is complete for SO3. We conjecture that the algorithm is complete for all groups. 

1. Introduction 

There continues to be interest in finding improved methods for calculating 3-jm and 
6-j symbols for various groups, because of the use of many different groups in quantum 
mechanics. Some recent examples of such calculations are Chen et a1 (1985) for the 
space groups, Haase and Dirl (1986) for the symmetric groups, Judd (1986,1987), 
Judd er a1 (1986) and Pluhar et a1 (1986) for the classical groups, Raynal and Conte 
(1985) for the point groups and Zeng (1987) for OSp(l,2).  

Most authors have calculated 3-jm from explicitly symmetrised basis functions and 
then calculated 6- j  from the 3-jm. Using such an approach, a basis choice for the 
partners of each irrep must be made to calculate the 3-jm, even though the 6-j are 
totally independent of such a choice. However when calculating 6-j, an alternative 
and more direct approach is to use the Biedenharn-Elliott, the Racah backcoupling 
and the orthonormality relations of 69, relations which are valid for all compact groups 
(see Derome and Sharp 1965, Butler 1975). As well as these generally valid relations, 
we require specific information about the group, specifically the product rules and 
plethysms (or symmetrised powers) of the irreps. An early example of such a calculation 
is the demonstration (Butler 1976) that the Racah formula for the 6-j  of SO3 can be 
obtained directly from the product rules of SO3. If one requires 3-jm, a basis choice 
can then be made using the appropriate subgroups, and the general 3-jm can be 
calculated from this information and the 6-J of the group and subgroup. Complete 
tables for all point groups (up to j = 8) have been calculated by this means (Butler 
1981) and we have further improved upon that algorithm for all non-primitive transfor- 
mation factors in a previous paper (Searle and Butler 1988). 

Judd et a1 (1986) emphasise that calculating multiplicity-free 6-j for a general 
compact group is a relatively simple extension of the methods for SO3. Our preceding 
paper showed that the calculation of non-primitive 6-j symbols with multiplicity may 
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be carried out essentially as for the multiplicity-free case once the primitive symbols 
have been chosen. This paper will consider the calculation of primitive 6-j by placing 
them into various classes, and recursing downward until we reach a core 6-j. The 
calculation of the core 6-j  includes calculation of basis 6-j  which requires the choice 
of the free phases in  the 6-j  algebra and the separation of the coupling multiplicities. 

The present study grew out of a request by Hamer (see Hamer et a1 1986) for some 
6-j  of SU, involving irreps up to power five. The ALGOL program used by Butler (1981) 
for calculating 6-j  and 3-jm of the point groups, and used by Bickerstaff er a1 (1982) 
for some 6-j  of SU3 and SU6, was found to be unnecessarily indirect. It required more 
intermediate steps than were necessary and included the calculation of 6- j  outside the 
range of interest. This arises partly because SU, contains the case { 1) x { l}  3 { l}*, a 
case which does not occur when the primitive irrep is symplectic and indeed occurs 
only rarely amongst the classical groups. Our attempts to avoid the need to calculate 
6-j outside Hamer’s range of interest led us to the present algorithm. 

Section 2 reviews the definitions needed in this paper. Section 3 discusses the 
number and occurrence of phase choices available in the 6-j  part of the Racah-Wigner 
algebra, results due to Derome (1966) and used by him to make certain advantageous 
phase choices in the symmetry relations. In 0 4 we categorise a subset of the 6-j  as 
the basis set of 6-j. This basis set may be used to fix all the free phases and multiplicity 
separations of the 6-j algebra. Section 5 splits the primitive 6-j into various subclasses 
and shows how to solve for 6-j  in some of the classes in terms of 6-j  of a class of core 
6-j. All the basis 6-j  belong to the core subclass. It is the discovery of this classification 
and the consequential use of the recursion relations that is the central result of this 
paper. Our building-up method in the past has always provided sufficient relations 
for the 6-j  of all the various groups we have studied. However one has sometimes 
needed to search for the useful equations by the tedious method of systematically 
trying all equations which involve the unknown 6-j. Section 5 proves that the primitive 
6-j may all be written in terms of the core subclass. As noted above, this class of core 
6-j includes all basis 6-j, and in 0 6 we discuss how 6-j  in this class can usually be solved. 

The problem of calculating the core 6- j  remains partly open. The group SO, is 
special in having one irrep of each power, and this allows us to prove completeness 
for SO3. Likewise explicit calculation shows that the 6-j  for all the point groups and 
SU3 are readily calculated by the present algorithm. 

2. Definitions and reviews 

Derome and Sharp (1965) introduced the matrix m(r, A l A 2 A 3 ) ,  indexed by coupling 
multiplicity labels, to describe the symmetries under column permutations, r, of a 
3-jm symbol involving the irreps A , A 2 A 3  of a compact group. The same paper introduced 
a generalisation of the 6- j  symbols of angular momentum that give the remaining 
information on recoupling transformations in the Racah-Wigner algebra. Butler (1975) 
gives a review of the Racah-Wigner algebra for the case of a general compact group, 
while Butler (1981) gives an account of the definitions and results appropriate to those 
couplings, such as those within the point groups, that have a simple permutation 
symmetry. (The more general case occurs when the coupling of three identical irreps 
to a scalar is said to be of mixed symmetry, the three irreps of the threefold coupling 
transforming amongst themselves as the irrep [21] of the symmetric group S3.)  The 
above references show that the familiar methods of angular momentum theory apply 
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to any compact group subject to the generalisations required when: (i)  an irrep A is 
not unitarily equivalent to its complex conjugate A*; ( i i)  when a coupling of the three 
irreps A l A 2 A 3  gives the scalar irrep more than once; (iii) when mixed symmetry couplings 
occur. 

As in our previous work (Butler 1981, Searle and Butler 1988) we use the concept 
of the power p ( A )  = k of an irrep A, where ( E  + E * ) ~  3 A and E is the primitive irrep, 
to define a partial ordering: we say that A <pp if p ( A )  < p ( p ) .  The ordering,of irreps 
is then arbitrarily completed ensuring only that A and A *  are contiguous irreps. 

A triad A,A2h3r is defined to exist if A I  x A 2  x A,  contains the scalar at least r times. 
The triad is said to be in standard order if A ,  3 A 2  3 A 3 .  For the purposes of the 
classification we must define a partial ordering between two triads A,AbA,r, ~ u , p b ~ , s  by 
writing them in standard order A , A 2 A 3 r  and p1p2p3s, and saying that hlA2A3r<p  
/ . L I / . L ~ / L ~ s  if p ( A 2 ) + p ( h 3 ) < ~ ( p 2 ) + p ( p 3 ) .  This ordering differs from the one used by 
us for tabulation purposes. The present partial ordering (cP) is to be completed by 
basing the further ordering on the completed ordering of the irreps. Further, a triad 
is in standard form if it is in both standard order and A , A , A , r < A : A ~ A ~ r  in the 
completed ordering. 

In addition to using these orderings, we classify triads by the power of their smallest 
irrep. A trivial triad contains the scalar irrep and is of the form A * A O ,  while a primitive 
triad contains an irrep of power one, that is, E or E *  (but we do not include the & * E O  

triad). In the following we will often use c l ,  E * ,  etc, to denote an irrep of power one 
(either E or E * ) .  A triad is said to be stretched i f p ( h l )  = p ( A , ) + p ( A , )  when in standard 
order. For all the (double covered) point groups, all symmetric groups and all simple 
compact Lie groups, these triads are of multiplicity one if E is chosen as the lowest- 
dimensional faithful irrep. For most of these groups the sets of primitive and stretched 
primitive triads are identical. However, for four of the above groups, namely SU3, 
E6, E8 and G2, the stretched primitive set is smaller because the non-stretched coupling 
E x E 3 E *  occurs (if spinor irreps are excluded and the vector irrep is chosen as the 
primitive irrep such products also occur for some point groups, for all SO, and for 
S,). We will often write a stretched primitive triad in the standard form as A h E 1 ,  since 
there is no multiplicity, and we use the notation 1 to indicate any irrep of power 
p ( A )  - 1 contained in either of the products, A *  x E *  or A *  x E .  

In similar fashion to the definition of triads, a trivial 6-j is defined as a 6 - j  that 
contains the scalar irrep. A primitive 6-j  does not contain 0 but does contain E or E *  

and hence contains at least two primitive triads. A core 6-j is a certain kind of primitive 
6-j and will be defined in 0 5. 

3. The phase factor matrices 

Derome (1966) exploited the unitary freedom in the multiplicity space of a coupling 
coefficient to analyse the possible structures of the permutation matrices m( T, A 1 A 2 A 3 ) .  
If A , A 2 A 3  couple together to give n copies of the scalar irrep, so that there are n 
non-vanishing triads AlA2A3r, then there is a n x n unitary matrix K(A,A2A,) describing 
the transformation between one set of coupling coefficients with a given set of phases 
and multiplicity separations, and another such set. For each triple A l A 2 A 3  in standard 
order, there are up to twelve distinct phase freedom matrices, K ,  one for each of the 
six orders and one for each complex conjugate triple. One of the principal results of 
Derome (1966) was to show how to exploit the phase freedom matrices to select simple 
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values of the elements of the matrix m(.rr, A ,A2h3) .  We call the matrix elements the 
3 - j  and write them as {AlA2A3}rs .  

Except for mixed symmetry couplings, the 3-j may be chosen (or fixed, depending 
on the case) as diagonal in rs, *1 for interchanges ( f l  for cyclic permutations) and 
independent of the order of the triad (Butler 1975). This choice leaves us the freedom 
of choosing one phase freedom matrix K(A,A2A3) for each ordered triple A l A 2 A 3 .  If 
any two of the irreps in the triple are identical, the phase freedom matrix is not totally 
free but is restricted to being block diagonal with respect to the permutation symmetry 
type. Butler (1975) also chooses the Derome and Sharp (1965) A matrix to be unity, 
hence fixing the relationship of K(ATAfAT) to K(A,A2A3)*. (Bickerstaff and Damhus 
(1985) argue that a unit choice for A may not be the most propitious choice; however 
the actual choice does not affect the results of this paper.) Any choice of a standard 
form for the rn and A matrices fix the relationship of the up to twelve distinct phase 
freedom matrices K .  In the following sections we may therefore consider the matrix 
K(A,A2A,) free if and only if the triple A , A 2 A 3  is in standard form. 

The above discussion looked at the coupling phase freedom. A similar argument 
applies to the branching phase freedoms which occur in the 3-jm part of the Racah- 
Wigner algebra. Bickerstaff (1984) and Bickerstaff and Damhus (1985) discuss condi- 
tions on the choice (or lack) of reality of coupling coefficients. However the coupling 
and branching phase choices are not always the only choices one must make within 
the Racah-Wigner algebra. Reid and Butler (1980, 1982) show that additional phases 
can occur for some group-subgroup pairs, phases that are related in some way to the 
orientation of the subgroup H within the group G .  These orientation phases occur 
since certain basis kets are not fixed by the 3-jm algebra, and involve special cases of 
the branching rules. It is possible that the product rules A ,  x A * >  A 3  contain similar 
choices since they are equivalent to a branching G x G 3 G.  However, we have found 
no evidence that such phases occur in the 6- j  algebra of any of the groups we have 
studied. 

4. The basis 6-j 

Two alternative choices of the phase and multiplicity separation in a 6- j  symbol are 
related by four coupling phase freedom matrices in the following manner: 

alt c: :: :~ls,s2s,. 
= K ( A  1 f p3) 'I r ,  K ( p 1 A 2p T '2r2 K ( p2A 3 )  Sr3K ( A T A T  A T  ) s4r4 

(4.1) 

The non-primitive 6- j  have previously been shown (Searle and Butler 1988) to be 
totally dependent on the primitive 6- j  and hence contain no freedom at all. This means 
that the freedom allowed by the K matrices is only constrained by choices of primitive 
6-j. 

Each irrep in a 6-j occurs in two triads. As we build up our 6- j  we will at some 
time try to solve for a 6-j which contains an irrep, A, that has not previously been 
used. Since this irrep occurs in two triads, we have two new free phase matrices arising, 
one for each triad. We are allowed to choose the phase of the 6- j  if the two triads are 
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distinct. Such a phase choice results in the choice of (part of-if there is multiplicity) 
one of the two free K matrices involving A with respect to (part of) the other and 
with respect to the K matrices of the other two triads in the 69.  This process occurs 
for every triad that has the irreps A or A *  as the largest irrep, resulting in all the phases 
being chosen with respect to the one matrix K that is still free. We arbitrarily choose 
the triad that has the free phase matrix to be one of the stretched primitive triads A X E ,  
for the irrep A. This matrix K(Ah&,) cannot be fixed within the 6- j  algebra (Bickerstaff 
1981) and the triad is known as the basis triad for the pair A, A*. Those 6- j  for which 
a phase is chosen are said to be the basis 6-j  corresponding to those triads whose 
phase they fix. This selection process occurs once for every irrep A (or pair A, A * )  
where A > E. In groups where E x E 2 E *  we find that the phase matrix of the triad E E E  

cannot be fixed by the algebra either, so that the primitive irrep has a basis triad in 
these few cases. 

For each triad Aapr, where p ( p , >  1 and where the triad is in standard form, we 
will select as the basis 6- j  the 'least' of the 6-j in the form 

We define this 'least' 6- j  by choosing = E and the irreps p' and A '  to be as small as 
possible in the following manner. Sometimes there is more than one irrep p' of power 
p ( p )  - 1 that can be used. In a similar way several A '  (and r2 )  may occur. We select 
the smallest irrep p' for which the power of A '  is a minimum, and the smallest irrep 
A '  of this minimum power and where the 6-j is non-zero (see 0 6) .  Finally E *  may be 
used instead of E if it allows irreps of smaller power to be chosen. Usually the resulting 
basis 6-j is of the form 

and has two non-primitive triads Aapr,, h*apr,. 
When more than one irrep 1 exists for a given A, then there is more than one 

primitive triad for the irrep (of the form A X E  or Ah&*). Any one of these triads can 
be chosen basis. We choose the one with the smallest 1. The remaining primitive 
triads give rise to corresponding basis 6-j. If we choose p' = p as in the form above 
we will find that p = 0. We cannot choose this as a basis 6- j  as this is a trivial 6- j  with 
no freedom of phase. For most groups the smallest useful value for p' is one of the 
power two irreps. We choose the smallest value of A '  that results in distinct triads 
involving A, thus ensuring that there is sufficient freedom in the 6- j  for it to be basis. 
The resulting basis 6- j  is of the form 

I: Ez (4.3) 

where Ahb&: is the triad chosen as basis for A. For those few groups where E E E  is a 
triad, triads of the form A C Y E ,  occur where p ( a )  = p(A) or p ( a )  = p(A) - 1. In either 
case we have always found a suitable p ' =  E~ and A ' =  1 to give a basis 6-j of the form 

(4.4) 
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5. Primitive 6-j symbols 

In this section we classify all primitive 6-j into various forms determined by the number 
and the position of the primitive irreps. We then use the Racah backcoupling and 
Biedenharn-Elliott equations as recursion relations to relate any primitive 6- j  to 6- j  
in one particular form and primitive 6- j  involving only smaller triads. 

Consider first the primitive 6 - j  with at least one non-primitive triad. In order to 
classify these 6- j  we use symmetry relations to rearrange the 6- j  so that the largest 
non-primitive triad Aapr4 is in standard order and in the top row. For those primitive 
6- j  with two primitive triads (so two triads are non-primitive) we obtain a 6- j  in one 
of three general forms, depending on the position in the bottom row of the primitive 
irrep. The primitive 6- j  with one non-primitive triad can be rearranged to have two 
primitive irreps in the bottom row. Those 6-j with a primitive irrep in column 2 will 
be defined as core 6-j, 

(5.1) 
A f f P  LY A f f P  (,. E1 A t i r l r 2 r 3 r j i t  E 1  : J r l r 2 r 3 r j E 2  E l  Afl r l rzr3r4  

while the others are not: 

(5.3) 

In (5.1), ( 5 . 2 )  and (5.3) the coupling conditions restrict the powers of CY’, p ’  and A ‘  to 
be within one of the powers of a, /3 and A respectively. 

All other primitive 6- j  contain four primitive triads and may be related by the 
symmetry relations to one of the following: 

(5.5) 

where hasz is the largest triad (so A S a, a 3 A ‘  and A 3 a‘). The 6- j  of (5.4) only occur 
for the groups where E E E  exists. It is easy to show that none of the irreps A, a and A ’  
can be of power greater than three in (5.5). We will define the 6- j  in (5.4) and (5.5) 
to be part of the set of core 6-j. 

For most groups (that is where the triad E E E  does not exist) all basis 6- j  belong to 
one of the forms of (5.1). However, to be consistent with the above classification the 
6-j in (4.3) must be related by symmetry to a 6-j in the form 

{L i t l r l r 2 r 3 r 4  

since &2r4 is the only non-primitive triad. For the few groups that contain E E E ,  the 
basis 6-j in (4.2) belong to one of the forms of (5.1), whereas those in (4.4) belong to 
the form of (5.4). 
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We refer to the 6- j  in (5.1), (5 .4)  and (5.5) as the core 64,  and emphasise that our 
set of basis 6- j  is a subset of the set of core 6-j.  In the remainder of this section we 
shall give a recursive method of solving all non-core 6-j.  

Any 6- j  in the form of (5 .3 )  may be related to 6-j in the other primitive forms by 
applying the Racah backcoupling relation (Butler 1975, equation (9.10)), together with 
the symmetry relations. The first 6 9  that occurs is in the form of one in (5.1), and the 
second 6- j  is of the form of one in (5 .2) .  After application of the symmetries, we have 

where A * 1 denotes all irreps of power p ( A )  * 1. Since we are only interested in the 
form of the equations for the 6- j ,  we have put all phase and dimension factors, in this 
equation and those that follow, into the symbol #. 

The Biedenharn-Elliott equation, when applied to a 6-j from (5.2), gives 

h a ”  A CY p *  $.{ a’ A ’  ~1 I r , r 2 r 3 r  { P  E 2  v l s l s : s 3 r  

(5.8) 

p = h ’ - 1  A *  r 2 t l s I t 2  P ~1 r l r 2 t 3 x 2  ET P t2 t3s3rg  ”*I = #( A’* p E > }  {U: a P }  (;: a’ 

1112t3 

where the symmetries have again been used to rearrange the forms. The coefficient 
6- j  (second from the left) is in the form of the basis 6- j  (and is basis when v is a 
minimum), and we have shown in our paper on non-primitive coupling coefficients 
(Searle and Butler 1988) that the Biedenharn-Elliott equation will allow us to com- 
pletely solve the set of unknowns when all v are considered. The first 6- j  on the 
right-hand side has only primitive triads and is in one of (5.4), (5.5) or (5.6). The 
second 6- j  is the same form as the unknown but p has been reduced to P. Thus the 
largest non-primitive triad has been reduced (often further gains are made because 
v = h as well). The third 6- j  is of the form (5.1), and is to be solved by other means. 

The 6- j  of (5.6), where A’, A,  a’ and CY are all non-primitive, may be related to 6- j  
that belong to those in (5.1) or (5.4) by use of the Racah backcoupling equation, where 
the maximum power of p is two: 

(5.9) 

This means that we have solved all primitive 6- j  in terms of the core 6-j.  

6. The core 6-j 

A difficulty with finding a proof of completeness for our algorithm for the core 6 3  is 
due to the fact that no single relation (orthonormality, Racah backcoupling or Bieden- 
ham-Elliott sum rule) wil! always give sufficient linearly independent equations to 
solve for all unknowns. The set of core 6- j  has the basis 6- j  as a subset. The phase 
(and sometimes the multiplicity separation) of a basis 6-j is free so it can only be 
possible to find the magnitude of the unknown via equations which are quadratic. As 
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a consequence we know that any complete set of suitable equations cannot be linear, 
so theorems for the completeness of linear equations are of little use. 

When a free triad AaPr  exists for r > 1 we get one basis 6- j  for each value of r and 
need to resolve the multiplicity of these couplings subject to the group selection rules. 
When the triads have different symmetry types for some of the values of r, the equations 
that depend on the symmetry give extra information. When different values of r have 
the same symmetry, symmetry will only partially solve the problem of separating the 
multiplicities and additional choices are required. 

A second difficulty occurs if a 6-j  chosen to be a basis 6- j  turns out to be zero, 
because no phase is fixed for such a zero value. A 6-j  is chosen to be the basis 6- j  for 
a triad AaPr depending on the value of P '  and A '  (see 0 4). If such a choice leads to 
a zero then the choice of A '  or P' must be revised, and we must solve for the magnitude 
of the revised choice of basis 6- j  so as to fix the associated K matrix. The occurrence 
of zero values is normal for a triad AaPr with multiplicity when there is insufficient 
symmetry information to completely separate the multiplicity. In this case we must 
choose the separation, and a zero for the value of r is the easiest choice to make, 
although this choice results in the phase of the corresponding triad remaining free 
until a revised value of p' and A '  is used for the given value of r. 

The consequence of these problems is that it is difficult to enunciate a complete 
algorithm for the core 6-j, preventing us from proving that our algorithm is complete. 
However we have always been able to find sufficient equations to solve for any group 
we have so far attempted and we can prove completeness for SO,. 

SO, is the unique compact Lie group with one irrep of each power and it is 
multiplicity free. We use the example of SO, first to illustrate the kind of procedure 
to follow for typical groups and second to prove completeness in this special case. As 
with all groups that we have applied this algorithm to, we find that the orthonormality 
relation is sufficient to solve for almost all (but not all) of the core 6-j. 

In SO, all primitive triads are stretched and there is only one primitive triad for 
each irrep so there are no basis 6- j  for the case P = E.  Since there is only one irrep of 
each power the choice of P' and A '  in (4.2) is unique. We find that the 6 - j  in (5.4) do 
not occur and the set of 6 - j  in (5.5) reduce to 

whilst the 6- j  with one non-primitive triad in (5.1) become, for all a 2 1, 

a + l  a 1 } I a  a }{" 4 a 4 a - - ' .  1 2 } f i 
1 

We choose the first and last as basis 6- j  for all triads a + la 1 and aa 1 respectively. 
The orthonormality equations give these basis 6-j  immediately using the following 

equations (the summation is over the irreps of SO3, not the powers): 

where we recall that 6 - j  with the identity irrep are always known. We can solve for 
the above non-basis 6 - j  by using the following equations. The equations relate the 
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unknowns to trivial 6- j  and to the basis 6 - j  for the non-primitive triads that occur: 

The remaining 6-j  in (5.1) with two non-primitive triads have three possible forms: 

{ p t j  ; 2 A!L}{pLi 2 2 2  y A:;}{@:i 2 3 A-: } 
where the first of these is chosen as the basis 6-j for Aap, and where p > 1 (as well as 
p = 1 for the third case). We may use the orthonormality equations to solve for these 
6-j. The first two equations below relate the core 6 - j  to the basis 6% and the last is 
the normality relation required to find the magnitude of the basis 6- j  (and is recursive 
in that it requires knowledge of smaller core 6 - j ) ,  

where in each case the sum contains two terms. 
In the above calculation for SO3, we note that orthonormality is only once 

insufficient for a complete solution. For all groups that we have considered it is the 
core 6-j  of low power that has caused us the most problems. SO3 gives an example 
of this since it is a small core 6-j that cannot be solved by orthonormality. 

7. Conclusion 

We have significantly improved the algorithm for the calculation of primitive 6-j. By 
defining a subclass of primitive 6 - j  known as the core 6 - j  we have been able to give 
a complete method for calculating all non-core primitive 6-j .  These core 6 - j  form a 
minority of the primitive 6-j, for example in the octahedral group (see the table on 
p 439 in Butler (1981)) there are 100 primitive 6 9 ,  45 of which are core (20 of these 
core 6-j are basis). A significant number of these core 6- j  involve irreps of low power 
and seem to be the hardest to resolve. 

We have been unable to give a complete algorithm to solve for the core 6 - j  for a 
compact group with faithful irreps, although we have been able to do so for SO3 and 
have been able to resolve the problem for all groups we have so far considered. 
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